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ABSTRACT

We show that the clustering structures in the observed universe and in numerical simulations are not well
represented by a homogeneous measure on a fractal. We propose instead that a good description of these
clustering structures is given by “multifractals "—fractals having more than one scaling index.

We evaluate the multifractal characteristics of a data sample and a numerical simulation of an axion-
dominated universe. The clustering structures revealed by the multifractal analysis are quite similar, both
showing a variation of dimensionality from 1 to 3 over similar ranges of scales. The multifractal description
provides a natural way of scaling the numerical models to the data.

If a bias is applied to the simulation, the result is a distribution of points that has almost constant dimen-
sion, 1.5, on all scales. This reduction of the distribution of dimensionality by biasing may be a problem for

theories that invoke naive biasing schemes.
Subject headings: cosmology — galaxies: clustering

I. INTRODUCTION

As catalogs of redshifts of galaxies (Tully and Fisher 1978;
Kirshner et al. 1981; de Lapparent, Geller, and Huchra 1986)
have become available, we have seen a complexity of structure
previously only hinted at by the earlier surveys of galaxies
projected on the celestial sphere (Soneira and Peebles 1978).
We see in these surveys “voids,” “filamentary,” “ bubble,” and
“sponge” structures, but these remain qualitative descriptors

and so provide only subjective bases for comparison between -

theory and observation.

Characterizing the large-scale clustering structure of our
universe is an important problem with a long history. Not only
do we wish to understand the nature of the large-scale clus-
tering, but we also wish to compare it with models purporting
to explain that structure. The most common way of quantify-
ing the clustering has been to use the two-point and higher
order correlation functions. However, the interpretation of
these low-order correlation functions is not without ambiguity.

The new view of the structure from the redshift surveys sug-
gests that the fractal description (Efstathiou, Fall, and Hogan
1979; Peebles 1980; Mandelbrot 1977, 1982) may be only a
first approximation: there appears to be a density-dependent
quality to the clustering in the sense that the largest and most
rarefied structures are the voids, whereas the denser systems
show a filamentary character.

In this paper we shall show how to quantify this apparent
density-dependent structuring, using a recently developed gen-
eralization of the fractal concept—the multifractal. The multi-
fractal provides us with both a measure of the dimensionality
on various length scales and a relative frequency of the struc-
tures of various dimensions that are identified on these scales.

II. THE DATA SAMPLES

In this paper we use two data samples: a version of the CfA
catalog of Huchra’s compilation of redshifts and a simple,
axion-dominated N-body simulation of gravitational clus-
tering.
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From the CfA redshift survey we selected a cone centered on
the north Galactic pole with b > 40° with v,,, = 800 km s,
the limiting absolute magnitude (for H = 50 hkm s~* Mpc™!)
being —21.5 and the total number of galaxies 452. This sample
is relatively complete and has been used before to study the
behavior of the correlation function (Einasto, Klypin, and Saar
1986).

For comparison we used data from a numerical simulation
of an axion-dominated cosmological model with nonzero
A-term, which has been claimed to represent the observations
rather well (Gramann 1987). We shall also look at a biased
version of this sample created by selecting the galaxies lying in
the peaks of the initial density distribution. The threshold is
chosen so as to select out 10% of the initial sample.

II. IS COSMIC CLUSTERING A FRACTAL?

To calculate the box or fractal dimension of the different
samples we are working with, we use a statistically corrected
box-counting method, which provides good accuracy, even for
small data sets. The box dimension of a fractal point set can be
calculated by partitioning the sample volume into cells of size €
and counting for each value of € the number of occupied cells
N(e). The plot of log N(e) versus log (1/€) yields a straight line
for a fractal, and its slope is the fractal dimension.

If the number of points in the data set is not too large, the
estimate of N(¢) will depend sensitively on the detailed position
of the grid. To avoid this problem, we could replace N(e) by a
mean taken over several realizations of the random process,
N(e). However, while we could in principle generate many real-
izations of a numerical simulation, we in fact have only one
realization of the observed universe. So we generate different
samples by simply shifting the counting grid from one position
to another with a random vector a having components |a;| <
€. We have verified the effectiveness of this technique in a
variety of situations. Finding N(e) for different box sizes ¢, the
dimension D associated with a given value of € will be

_ d[log N(e)] (1)
dflog (1/e)]

If this value is constant for a particular range of scales ¢, the set
has fractal behavior in that range.
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F1G. 1.—Scaling behavior of the fractal dimension (capacity) D with the size
€ for observations (curve o), the full axion model (curve f) and the biased
version (curve b). Plotting D vs. log €, one would observe constant behavior for
simple fractals. Instead, for the observations and the full model there is signifi-
cant evidence for an increase of dimensionality with scale size. Only the biased
data display scale-independent dimensionality (though it is not a simple
fractal: see Fig. 2).

The results for our samples are given in Figure 1, where the
observations are denoted by o, the full model (all particles
used) by f; and a biased version (bias level 0.1) by b. The scale €
is expressed in the units of the side of a cube enclosing the
sample.

As we see, the box dimension (capacity) of the observed
sample, as well as that of the unbiased simulation data, keeps
growing with the scale size, ruling out homogeneous fractal
models. It is surprising, however, that the biased version of the
simulation does have a plateau on the D versus log € plot.
However, one should beware of jumping to the conclusion that
this distribution is a homogeneous fractal simply because it
displays a scale-independent dimensionality. The condition
that the fractal dimension be constant is necessary but not
sufficient for the distribution to be a homogeneous fractal. We
shall show that the biased numerical model (curve b) is not a
homogeneous fractal despite its scale-independent dimension-
ality.

The observed data set is relatively small (452 points), and we
should consider the possibility that this method of obtaining
the fractal dimension is not convergent. As a check, we can
calculate directly the correlation dimension D,, which is
always a lower bound on the fractal dimension D,
(Grassberger and Procaccia 1983). D, has been calculated as
the exponent of a power-law fit for the correlation integral at
small distances:

Cle) = J£4nr2[1 + &(r)]dr oc €P2 . 2
()

D, for the observed data sample has a constant value of 1.3.
[The two-point correlation function &(r) for this sample is a
power law of slope y = 1.70 + 0.04.]

Since the simple fractal description manifestly fails to
describe the distributions, we shall try to find whether the
structure can be represented as a mixture of different fractal
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sets using the recently developed multifractal ideas and tech-
niques (Hasley et al. 1986). (See Mandelbrot 1986 for a
comment on the history of multifractals and fractals.)

The fact that the observed data sample (0) and the unbiased
numerical simulation sample (f) have the same slope is signifi-
cant. It indicates that the clustering structures are similar from
the point of view of their dimensionality. The lateral displace-
ment of the curves relative to one another comes from the
different number of points in each sample and is not relevant in
terms of fractal dimensionality. This lateral displacement does,
however, indicate how to scale the numerical model to the
observed data.

The dimensionality of the sample must tend to 3 as the
sample cell size increases. This is because beyond some particu-
lar scale all the cells must be occupied. The point at which the
dimensionality attains this plateau gives a characteristic scale
to the point distribution which is presumably related to other
clustering scales, such as the scale on which the correlation
function falls to unit amplitude or the percolation length scale.

IV. THE MULTIFRACTAL FORMALISM

To be specific to cosmology, let us consider a point set
embedded in a three-dimensional Euclidean space, each point
representing the position of a galaxy. The first step in
developing the multifractal formalism is to assign a probability
measure to the set (Mandelbrot 1982). A natural way to do this
is to partition the sample volume into cells (cubes) of size € (¢
small) and then to count the number of points within each cell,
n{e). The probability that a random point falls in a given cell is
then

n{e)
pde) = N’ 3)
where the subscript i labels the cells and N is the number of
points in the sample.
The moments of this measure define a new function,

. log 3N [p(e)]*
= lim —&= L=
w(q) gr; log ¢

)

Homogeneous fractals display a linear dependence of 7 on g,
whereas any departure of linearity implies multifractality.
Therefore, 7(q) provides a generalization of the concept of
dimension (eq. [1]) to sets that are not homogeneous fractals.
Itis related to the generalized dimension

D,=(q—1)""(g) (5)

(Hentschel and Procaccia 1983). D, is the Hausdorff dimen-
sion, while D, is the so-called information dimension and D, is
the so-called correlation dimension. The D, form an infinite set
of relevant dimensions characterizing chaotic systems. It is
easy to see from equation (5) that D, is always decreasing, i.e., if
q=q thenD, < D,.

It is useful to note that large values of q select out the terms
where p is largest, in other words the denser regions of the
distribution. Likewise, the large negative values of g refer to the
least dense regions.

Obviously, Y, p? is directly related to the familiar
moment generating function of the underlying random point
set distribution (Peebles 1980, § 38). Thus the function D, pro-
vides a compact and intuitively accessible way of describing
what has hitherto been buried in the higher statistical moments
of the galaxy distribution.
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There is an alternative description of such a distribution
which some may find more appealing than D,. Following a
standard procedure dating back to Holder (Mandelbrot 1982;
Jensen et al. 1985), we can make the physically reasonable
assumption that the cell occupancy probabilities pfe) are
related to the choice of € by a power-law expression

pi=€". (6)

The o; are the scaling indices of the set for that choice of €. In a
uniform measure on a fractal there will be only one scaling
index, and that will be related to the Hausdorff dimension of
the fractal. Studying how the values of the scaling indices are
distributed provides a useful tool to characterize the geometry
of the point set.

The number of times the scaling index o takes a value in the
interval [o, o + da'] can be expressed as

n(e)de’ =€ 7@ do’ | )]

where f(a) is the fractal dimension of the points in the set which
have the same value for the scaling index «, and will in general
be a continuous function. The function f(«) is the distribution
of dimensionalities that are present in the set. It plays a central
role in the theory of multifractals, and it is often referred to as
the “f(a) spectrum.”

The dimensionality structure of the set is equally well char-
acterized by t(g), D,, or f(«). It is a matter of taste as to which
gives a better feeling for the character of the distribution. We
can easily transform from one description to another. It can be
shown (Hasley et al. 1986) that the variables (g, 7) are related to
(o, f) through the Legendre transformation

og) = gt — (@) , ®)
d
() =3 )

Thus it is easy to obtain f'(«) by calculating the envelope of the
straight lines: y = gx — t(¢g) as g varies from —oo to + 0.
Mandelbrot (1988) has introduced the f(«) curve by rephrasing
the Gibbs formalism of thermodynamics.

The curve f(«) has a unique maximum, and the value of the
spectrum in that point is the fractal dimension, f (o), of the set.
Directly from equation (8) we obtain f’(«) = ¢, and hence the
maximum of f(x) is reached when g = 0, corresponding to
f(ay) = —1(0) = D,

We can see that o takes values in a finite range [%pin, %maxls
where

Omin = lim Dy, o, = lim D, ;

q-wo q— -

o 18 the scaling exponent of the region of the set where the
concentration of points is maximum, and «,,, is the scaling
exponent of the most rarefied parts. (This interpretation
follows from the observation made earlier that large positive
values of g select out the densest parts of the set, while large
negative values of g select out the least dense parts.)

It should be noted that in practice we have a finite sample of
discrete points, and so we cannot in fact take the limit N - oo
or € » 0. We can merely estimate what would happen if this
limit were attainable through a larger data sample. [See Jones
and Martinez 1988 for a discussion of this and other technical
points involved in calculating the f () spectrum.]
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V. RESULTS AND CONCLUSIONS

The results for the data sets described above are shown in
Figure 2. We have plotted the generalized dimensions D,, as
well as the f(a) spectrum. [Conceptually, we find f(«) to be the
easier function to appreciate intuitively, although, as we said
before, that is merely a matter of taste.] Note that we have
elected to plot the curves for particular choices of the cell size €,
and this means that the curves are not directly comparable. To
draw comparable curves would necessitate properly scaling the
simulations. Also, because of the discreteness of the samples,
we cannot let the cell size become arbitrarily small as
demanded by the definition (4). We do not consider this
restriction to be a problem for our description of these point
distributions as multifractals.

The analysis reveals a whole range of scaling indices « in all
three data samples. So none of the samples is a simple fractal,
not even the biased sample that displayed the interesting scale-
independent dimensionality. For each sample, the maximum of
the f () curve yields the fractal dimension for the chosen value
of €, and that is what is plotted in Figure 1.

Our conclusions are summarized as follows:

1. The distribution of galaxies in the universe is not well
represented by a simple fractal. The failure of the uniform
measure on a fractal is shown in Figure 1, where we see that the
box dimension of the CfA sample (curve o in the figure)
changes from 0.5 to 1.5 over one decade of scale lengths.
However, as we have mentioned before, fractal behavior may
still be expected with dimension D, > D, ~ 1.3. In fact, the
sample is well represented by a multifractal, and D, should be
the maximum of the f'(«) curve (see Fig. 2).

2. The numerical models are capable of producing struc-
tures having the same range of dimensionality as the data
(curve fin Fig. 1). The similarity of the curves fand o in Figure
1 (up to a scaling factor) indicates that the clustering structures
are similar, at least as far as the distribution of fractal dimen-
sion is concerned, and that with an obvious rescaling they
could be made to match.

3. We would be encouraged to reject the biased model b on
the grounds that it had a clustering structure differing mani-
festly from that of the real universe. Biasing the model tends to
reduce the spread in dimensionality because selecting only
objects above a given high threshold removes points from the
more spherical void regions of the simulation. Whether or not
this is an argument against simple threshold biasing in general
remains to be seen.

4. As an answer to the question “ If not fractals, then what?”
we have suggested that multifractals provide an important
descriptor of the large-scale clustering of the universe and of
numerical simulations (as was pointed out by Mandelbrot
1982). In Figure 2 we see the distribution of dimensionality in
each sample when viewed on some length scale. The maximum
of the f(@) curves corresponds to the fractal dimension, and, as
we saw from Figure 1, this changes with the sampling length
scale. A complete explanation of clustering in the universe
should reproduce these curves in detail.

5. The final point is a caveat. We have departed from the
usual description of multifractals (Hasley et al. 1986) in not
taking the limits as the sample box size tends to zero (cf. eq.
[4]). This is a consequence of the fact that our samples are
discrete point sets and so have dimension zero in the limit of
infinitesimally small sample cells. We shall discuss this approx-
imation in detail elsewhere.
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F1G. 2—Generalized dimensions D, and the f(«) spectrum for (a) observations, (b) the full axion model, and (c) the biased version. As we can see, the three cases
are clearly not simple fractals, since they show a substantial spread in the scaling index a. These plots are for specific values of the cell size €, but are nevertheless
representative of the general shape of the f(«) spectrum.
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We have made no attempt here to relate this measure of
clustering to other measures such as the correlation functions,
power spectra, or multiplicity functions, except to point out
that the D, curve is a compact and intuitively appealing way of
presenting the moment generating function for the galaxy dis-
tribution. As a statistical descriptor of the clustering there can
be little doubt that D, is of considerable value. However, it
would be inappropriate at this stage to suggest that there is
any deep physics in the fact that the universe and models of the

universe can be described in this way.
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